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ABSTRACT

We introduce UnrealZoo 1, a rich collection of photo-realistic 3D virtual worlds
built on Unreal Engine, designed to reflect the complexity and variability of the
open worlds. Additionally, we offer a variety of playable entities for embodied
AI agents. Based on UnrealCV, we provide a suite of easy-to-use Python APIs
and tools for various potential applications, such as data collection, environment
augmentation, distributed training, and benchmarking. We optimize the rendering
and communication efficiency of UnrealCV to support advanced applications,
such as multi-agent interaction. Our experiments benchmark agents in various
complex scenes, focusing on visual navigation and tracking, which are fundamental
capabilities for embodied visual intelligence. The results yield valuable insights
into the advantages of diverse training environments for reinforcement learning
(RL) agents and the challenges faced by current embodied vision agents, including
those based on RL and large vision-language models (VLMs), in open worlds.
These challenges involve latency in closed-loop control in dynamic scenes and
reasoning about 3D spatial structures in unstructured terrain.
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Figure 1: UnrealZoo enriches photo-realistic virtual worlds by combining diverse scenes and playable
entities. It enables training generalizable embodied AI agents for tasks such as navigation, active
tracking, and social interactions. Additionally, UnrealZoo facilitates the benchmarking of agents in
realistic virtual worlds, helping to identify challenges in open-world deployments.

1Project page: http://unrealzoo.site/
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1 INTRODUCTION

Currently, embodied artificial intelligence (Embodied AI) agents are often homebodies, primarily
confined to controlled indoor environments and rarely venturing outside to explore the diversity of
the open world. While several simulators (Kolve et al., 2017; Dosovitskiy et al., 2017; Puig et al.,
2018; Li et al., 2023; Puig et al., 2024) have advanced the field, they often focus on specific scenarios,
such as daily activities in homes or autonomous driving on urban roads. This narrow focus hinders
AI agents’ adaptability and generalization in diverse open worlds, e.g., industrial areas, public spaces,
and natural landscapes, required by a wide range of real-world applications.

To bridge this gap, there is an increasing demand for simulators that feature a diverse range of
open worlds. First, the diversity of the 3D scenes and bodies of agents is crucial to develop spatial
intelligence (Davison, 2018), enabling agents to actively perceive, reason, plan, and act when handling
numerous tasks in complex 3D worlds with varying dynamics and styles. Second, the complexity of
multi-agent interactions is essential for developing social intelligence (Duéñez-Guzmán et al., 2023),
such as the theory of mind (Jin et al., 2024), negotiation (Guan et al., 2024), cooperation (Wang
et al., 2022), and competition (Zhong et al., 2021), encouraging agents to behave more like humans.
Third, virtual worlds that mimic the challenges in open-world scenarios can evaluate agents efficiently
and effectively, identifying limitations and preventing hardware losses from real-world deployment
failures (Kadian et al., 2020). Ultimately, these features will inspire researchers to explore new
challenges previously overlooked in other simulators (Duan et al., 2022), facilitating seamless
integration into real-world applications.

In this work, we introduce UnrealZoo, a comprehensive collection of photo-realistic virtual worlds,
based on Unreal Engine 2 and UnrealCV (Qiu et al., 2017). UnrealZoo features a diverse range of
complex open worlds and playable entities to advance research in embodied AI and related domains.
This high-quality set includes 100 realistic scenes at varying scales, such as houses, supermarkets,
train stations, industrial factories, urban cities, villages, temples, and natural landscapes. Each
environment is expertly designed by artists to mimic realistic lighting, textures, and dynamics,
closely resembling real-world experiences. Our collection also includes diverse playable entities,
including humans, animals, robots, drones, motorbikes, and cars. This diversity enables researchers
to investigate the generalization of agents across different embodiments or build complex 3D social
worlds with numerous heterogeneous agents. To enhance usability, we further optimize UnrealCV and
offer a suite of easy-to-use Python APIs and tools (UnrealCV+), including environment augmentation,
demonstration collection, and distributed training/testing. These tools allow for customization and
extension of the environments to meet various needs in future applications, ensuring UnrealZoo
remains adaptable as the embodied AI agents evolve.

We conduct experiments to demonstrate the applicability of UnrealZoo for embodied AI. First,
we benchmark frames per second (FPS) across various commands, highlighting the significant
improvement in image rendering and multi-agent interactions with the UnrealCV+ API. We use
embodied visual navigation (Zhu et al., 2017) and tracking (Luo et al., 2018; Zhong et al., 2021) as
two example tasks to benchmark embodied vision agents in complex dynamic environments with
moving objects and unstructured maps. We also introduce a set of simple yet effective baseline
methods for developing embodied vision agents, including distributed online reinforcement learning
algorithms (Mnih et al., 2016), offline reinforcement learning algorithms (Kumar et al., 2020), and a
reasoning framework for large vision-language models (VLMs). Our evaluations across different
settings emphasize the importance of diverse training environments for enhancing agent generalization
and robustness, the necessity of low latency in closed-loop control to handle dynamic factors, and the
potential of reinforcement learning for training agents to navigate complex scenes.

Our contributions can be summarized in the following: 1) We build UnrealZoo, a collection of
100 high-quality photo-realistic scenes and a set of playable entities with diverse features, covering
the most challenging to embodied AI agents in open worlds. 2) We optimize the communication
efficiency of UnrealCV APIs and provide easy-to-use Gym interfaces with a toolkit for diverse
requirements. 3) We conduct experiments to demonstrate the usability of UnrealZoo, showing the
importance of the diversity of the environments to the embodied agents, and analyzing the limitations
of the current RL-based and VLM-based agents in the open worlds.
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Table 1: The comparison with related photo-realistic virtual worlds for embodied AI. Unstr. Terr. in-
dicates the presence of unstructured terrain. Nav. Sys. specifies whether the agent in the environment
includes an autonomous navigation system. In Appendix A, we compare the visual realism across
different engines in Figure 6 and list the descriptions of the symbols in Table 6.

Table 1: The comparison with related virtual worlds for embodied AI.
Virtual
Worlds

Scene:
Categories

Scene:
Scale Level

Scene:
Unstr. Terr.

Scene:
Base Engine

Agent:
Body

Agent:
Nav. Sys.

Agent:
Multi-agent

VirtualHome Room - Unity X X
AI2THOR Room - Unity - -

ThreeDWorld Room, Building, Landscape X Unity - X
OmniGibson Room - Omniverse - - -
Habitat 3.0 Room - Habitat-Sim X X

CARLA Building, Town - UE 4 - X
AirSim Building, Town, Landscape - UE 4 - X

LEGENT Room, Building X Unity X -
V-IRL Town, Landscape X Google Map X X

UnrealZoo Room, Building,
Town, Landscape X UE 4/5 X X

Table 2: The comparison with related virtual worlds for embodied AI.

Virtual
Worlds

Scene:
Categories

Scene:
Scale Level

Scene:
Style

Scene:
Base Engine

Agent:
Body

Agent:
Nav. Sys.

Agent:
Multi-agent

VirtualHome Indoor Modern, Western Unity X X
AI2THOR Indoor Modern, Western Unity - -

ThreeDWorld Indoor, Building, Community Modern, Western, Nature Unity - X
OmniGibson Indoor Modern, Western Omniverse - - -
Habitat 3.0 Indoor Modern, Western Habitat-Sim X X

CARLA Community, Landscape Modern, Western, Nature UE 4/5 X X
AirSim Community, Landscape Modern, Western, Nature UE 4 - X

LEGENT Indoor, Building Modern, Western Unity X X
V-IRL Community, Landscape Modern, Western, Nature Google Map X X

UnrealZoo Indoor, Building,
Community, Landscape

Ancient, Modern, Sci-Fi
Western, Eastern, Nature UE 4/5 X X

Symbol Description
Interior house with furnishings

Residential community with multiple buildings
High-fidelity large-scale urban environments

Exterior scenes with roads
Natural scenes with forests or grasslands

Large-scale natural landscape, including lakes, mountains, desert
An island landscape

Castle-style historic buildings
Asian temple architecture features stairs, lofts, and shrines.

Industrial areas with internal roads and factory facilities
Educational settings, including classrooms and gymnasiums.
Sports venue scenes, such as swimming pool, sport stadium.

Supermarket contains a wide range of daily essentials and produce.
Typical urban public transportation hubs, such as train and gas stations.

Detailed hospital interior scenes.
Human characters with detailed features such as hair textures, clothing, and actions

Mobile robot
Driveable car

Animals include common animal species such as cats, dogs, horses, pigs, etc.
Driveable motorbike

Drones
Virtual camera that has no physical entity and is movable

Table 3: Caption
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2 RELATED WORKS

Realistic Simulators for Embodied AI. Realistic simulators are extensively utilized in embodied
artificial intelligence due to their appealing benefits, including high-quality rendering, cost-effective
ground truth generation, low-cost interaction, and environmental controllability. They are crucial for
training and testing AI agents to handle increasingly complex tasks. Notable realistic 3D simulators
have been created for specific applications, such as indoor navigation (Kolve et al., 2017; Puig et al.,
2018; Xia et al., 2018; Wu et al., 2018), robot manipulation (Yu et al., 2020; Ehsani et al., 2021;
Chen et al., 2024), and autonomous driving (Gaidon et al., 2016; Shah et al., 2018; Dosovitskiy
et al., 2017). Recent advances in computer graphics have spurred interest in developing general-
purpose virtual worlds with photo-realistic rendering, allowing agents to collect high-fidelity data
and learn skills applicable across various tasks and scenes. ThreeDWorlds (TDW) (Gan et al., 2021)
and LEGENT (Cheng et al., 2024) are notable simulators that offer photo-realistic, multi-modal
platforms, based on Unity, for interactive physical simulation. However, their built-in scenes and
playable entities are somewhat limited. Additionally, the performance of the simulator decreases
significantly in large outdoor environments, a typical weakness of Unity. V-IRL (Yang et al., 2024)
is a recent approach that leverages Google Maps’ API to simulate agents with real-world street
view images, significantly reducing the gap between virtual and real-world settings. However, since
V-IRL is inherently composed of static images, it lacks the capability to simulate the dynamics of the
physical worlds for agent-object interactions. Recently, the community has also begun to explore
dynamic environments with social interactions and unexpected events. However, existing solutions
like Habitat 3.0 (Puig et al., 2024) focus on a limited number of agent interactions in indoor scenes,
while HAZARD (Zhou et al., 2024b) addresses only single-agent simulations in dynamic scenarios
like fires, floods, and winds. In contrast, UnrealZoo offers a comprehensive collection of scenes
that feature various scenes at different scales, situations, eras, and cultural backgrounds with diverse
playable entities for embodied AI. With advancements in Unreal Engine and optimized UnrealCV,
our environment achieves real-time performance in large-scale scenes with multiple agents (around
10) and photo-realistic rendering. A comprehensive comparison across the related photo-realistic
simulators is shown in Table 1.

Embodied Vision Agents. Embodied vision agents, which perceive and interact with their envi-
ronments through vision, are a key focus in artificial intelligence research. These agents perform
tasks like navigation (Zhu et al., 2017; Gupta et al., 2017; Yokoyama et al., 2024; Long et al., 2024),
active object tracking (Luo et al., 2018; Zhong et al., 2019; 2021; 2023; 2024), and other interactive
tasks (Chaplot et al., 2020; Weihs et al., 2021; Ci et al., 2023; Wang et al., 2023), mimicking human
behavior. Their development involves various methods, including state representation learning (Ya-
dav et al., 2023; Yuan et al., 2022; Gadre et al., 2022; Yang et al., 2023), reinforcement learning
(RL) (Schulman et al., 2017; Xu et al., 2024; Ma et al., 2024), and large vision-language models
(VLMs) (Zhang et al., 2024; Zhou et al., 2024a). Despite significant progress, challenges remain. RL
methods often require extensive trial-and-error interactions and computational resources for training,
and they usually struggle to generalize to new environments. Conversely, VLM-based methods excel
at interpreting language instructions and images but may lack the fine-grained control and adaptability
necessary for real-time interactions. The computational demands and time needed for inference with
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Figure 2: The detailed architecture of UnrealZoo. The Gray box indicates the UE binary, collecting
the scenes and playable entities. The UnrealCV+ Server is built in the binary as a plugin. We
have bolded the names of the optimized or new modules in UnrealCV+ Server and Client. We
provide OpenAI Gym Interfaces for agent-environment interaction, which has been widely used in
the community. Our gym interface supports customizing the task in a configuration file and contains
a toolkit with a set of gym wrappers for environment augmentation, population control, etc.

such large models are critical, especially in dynamic scenes. Moreover, previous simulators mainly
focus on indoor rooms or urban roads, which mask the potential challenges to the embodied agents
when deploying in open worlds, e.g., unstructured terrain, dynamic changing factors, inference costs
of the perception-control loop, and social interactions with other agents. Therefore, it is required to
benchmark agents in large-scale, photo-realistic open worlds, taking into account various real-world
challenges in the virtual worlds. In this work, we collect a subset of environments from UnrealZoo
and benchmark embodied visual navigation and tracking agents, to emphasize the weakness of the
existing RL-based and VLM-based methods.

3 UNREALZOO

UnrealZoo is a collection of photo-realistic, interactive open-world environments with diverse
embodied characters, built on Unreal Engine and UnrealCV (Qiu et al., 2017). The environments
are sourced from the Unreal Engine Marketplace 3, which shares high-quality content from artists,
and were accumulated over two years at a cost exceeding 10, 000. UnrealZoo features a diverse
array of scenes with varying sizes and styles. Among them, the largest scene, i.e., Medieval Nature
Environment, covers more than 16km2 areas. The environments also include a wide range of
embodiment, such as human avatars, vehicles, drones, animals, and virtual cameras, all of which can
interact with the environment and equipped with ego-centric sensing systems. We offer easy-to-use
Python APIs based on UnrealCV to facilitate interaction between Python programs and the game
engine. Note that UnrealCV is optimized for rendering and communication, particularly in large-scale
and multi-agent scenarios, namely UnrealCV+. Additionally, we provide OpenAI Gym interfaces to
standardize agent-environment interactions. The gym-like interface also contains a set of toolkits,
e.g., environment augmentation, population control, time dilation, and JSON-style task configurations
to help the user customize the environments for various tasks with minimal effort.

3.1 SCENE COLLECTION

UnrealCV Zoo contains 100 scenes based on Unreal Engine 4 and 5. We select the scene based on the
public reviews in the marketplace and the difference between the collected scenes, aiming at covering
a wide range of styles from ancient to fictional, ensuring diversity. We provide an overview of the
environments in the scene gallery.

We have tagged the collected scenes with several feature labels allowing researchers to select
appropriate scenes for testing or training based on the tags associated with each scene. Our tags cover
the following aspects:

3https://www.unrealengine.com/marketplace
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• Scene Categories: We categorize scenes into three main types: interior, exterior, and both.
The interiors include private houses, museums, supermarkets, train stations, factories, gyms,
and caves. The exteriors include various outdoor terrains such as ruins, islands, plazas,
neighborhoods, and mountains. Additionally, there are 46 scenes that include both interior
and exterior elements, offering a blend of architectural elements and natural landscapes,
enhancing the versatility and realism of our collection. More details about the distribution
of the scenes are shown in Figure 7.

• Scale: Each scene is labeled according to its scale, and categorized into four levels: indoor,
building, community, and landscape. The indoor scale is the smallest, typically encompass-
ing one or multiple interior rooms (up to a complete floor), such as apartments and office
interiors. The building scale includes a single building and its immediate surroundings, like
a museum, supermarket, or gas station. The community scale covers areas with multiple
buildings, such as neighborhoods, villages, castles, or container yards. The landscape scale
includes vast natural or man-made areas, or parts of a city or an entire small town, such as
mountains, forests, islands, and urban districts. Specifically, there are 35 scenes classified as
landscape, 28 as community, 23 as building, and 15 as indoor. The largest scene covers 16
square kilometers.

• Spatial Structure: We also tag the spatial structure of the scenes, including multi-floor,
topological, flat, steep, etc. Such categorization is vital for benchmarking the spatial
intelligence of embodied agents. Multi-floor structures, for instance, challenge agents with
vertical navigation and require advanced path-planning algorithms. Topological features,
such as interconnected pathways, test the agent’s ability to understand and traverse complex
networks.

• Dynamics: The environment’s dynamics include simulating factors like weather, fire, gas,
fluid, and interactive objects. These elements enhance the visual and physical diversity of
the scene while evaluating agents’ adaptability and generalization. Weather variations such
as sandstorms, snowfall, and thunderstorms are crucial, as are interactive objects like doors
that agents can interact with. These dynamics are vital for an open-world experience.

• Style: The scenes may also represent diverse styles that reflect various cultures and eras,
such as Asian Temple, Western Church, and Middle Eastern Street. Cultural labels include
Western, Asian, and Middle Eastern, while era labels encompass Medieval, Modern, and
Science Fiction. Identifying the styles will help us build a new data set to benchmark how
social agents adapt to different backgrounds.

After categorizing the scenes, we integrate UnrealCV+ (Refer to Section 3.3) into the UE project and
add the controllable player assets (Refer to Section 3.2) to each scene. Due to licensing restrictions,
content purchased from the marketplace cannot be open-source, so we package the projects into an
executable binary for sharing with the community. These executable binaries will be compatible
with various operating systems, including Windows, Linux, and macOS, allowing users to download
and run them via the Python interface without needing any knowledge of Unreal Engine, which is
primarily built on C++ and Blueprint.

3.2 PLAYABLE ENTITIES

UnrealZoo includes seven types of playable entities: humans, animals, cars, motorbikes, drones,
mobile robots, and flying cameras (See Figure 1). Specifically, it comprises 19 human entities, 27
animal entities (dog, horse, elephant, pig, bird, turtle, etc), 3 cars, 14 quadruped robots, 3 motorcycles,
and 1 quad-copter drone. This diversity, with varying affordances like action space and viewpoint,
allows us to explore new challenges in embodied AI, such as cross-embodiment generalization and
heterogeneous multi-agent interactions.

Each entity includes a skeleton with appropriate meshes and textures, a local motion system, and
a navigation system. We offer a set of callable functions for each entity, enabling users to modify
attributes like size, appearance, and camera positions, as well as control movements. Each entity can
switch between different textures and appearances via UnrealCV API, enhancing visual diversity and
adaptability for various scenarios. Each entity is equipped with an ego-centric camera, allowing the
users to capture various types of image data such as RGB, depth, surface normal, and instance-level
segmentation (object mask) from the agent’s ego-centric view. Figure 3 shows examples of the

5



Preprint. Under review.

captured first-person view and third-person view images of different entities with varying locomotion.
For multi-agent interaction, the population of the entities in a scene can be easily adjusted using the
spawn or destroy functions.

The locomotion system is built on Smart Locomotion, a well-designed and smooth locomotion
system. It contains a number of high-quality animations that enable the agent to interact with
the scene, such as opening and closing doors, crouching under obstacles, jumping over obstacles,
climbing onto a platform, and simulating injury or death. With the locomotion system, we can explore
the agent’s ability to reason, plan, and interact in large-scale complex 3D scenes in advance, ignoring
learning skills for low-level action control that requires high-fidelity physical simulation.

The navigation system is built on NavMesh allowing agents to autonomously navigate with the
built-in AI controller. This includes path-finding and obstacle-avoidance capabilities, ensuring smooth
and realistic movement throughout diverse terrains and structures. For urban-style maps, we segment
the roads to distinguish between pedestrian and vehicle pathways. When agents use the navigation
system for autonomous control, they will navigate the shortest path based on the priority of the
different areas. For example, pedestrians and animals will prioritize walking on sidewalks, while
vehicles and motorcycles will prioritize driving on roadways. An example of the navigation area is
shown in Figure 10.

3.3 PROGRAMMING INTERFACE

We provide UnrealCV+ as the basic application programming interface (API) on Python to capture
data and control the entities and scenes, and provide an OpenAI Gym interface for general agent-
environment interactions. The architectures of the programming interfaces are shown in Figure 2.

UnrealCV+ is our improved version of the UnrealCV (Qiu et al., 2017) for high-throughput inter-
actions. As the original version of UrnealCV primarily focuses on generating synthesis data for
computer vision, the frame rates per second (FPS) are not optimized for real-time interactions. We
optimize the rendering pipelines in the UnrealCV server and the communication protocols between
the server and the client to improve the FPS. Specifically, we enable parallel processing while render-
ing object masks and depth images, which can significantly improve the FPS in large-scale scenes.
For multi-agent interactions, we further introduce the batch commands protocol. In this protocol,
the client can simultaneously send a batch of commands to the server, processing all the received
commands and returning a batch of results. In this way, we can reduce the time spent on server-client
communication. Since reinforcement learning requires extensive trial-and-error interactions for train-
ing, often running multiple environments on a computer, we introduce Inter-process communication
(IPC) sockets instead of TCP sockets to improve the stability of the server-client communication
under high loads. We benchmark the FPS performance in Table 2. To enhance user-friendliness, we
have developed high-level Python APIs that are built upon the command systems of UnrealCV. These
APIs encapsulate all the request commands and their corresponding data decoders into a callable
Python function. This approach significantly simplifies the process for beginners, allowing them to
interact with and customize the environment using UnrealCV+.

Gym Interface is used to define the interactive tasks and standardize the agent-environment interac-
tion, following Gym-UnrealCV. Even though there are a lot of tasks for agents, they usually share
common interaction protocols, i.e., the agent gets observations from the environment and returns
actions. The main difference across different tasks usually is the reward functions, the modality of the

Figure 3: First-person (Top) and third-person (Bottom) view images of different entities in different
scenes. Note that camera parameters can be reconfigured by UnrealCV APIs.
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Table 2: Comparison of FPS in Unreal Engine 4.27 with UnrealCV and UnrealCV+. The reported
result is an average performance across 6 typical environments.

Image Capture Multi-agent Interaction
Color Object Mask Surface Normal Depth N=2 N=6 N=10

UnrealCV 74 70 109 52 35 13 8
UnrealCV+ 83(↑ 12%) 154(↑ 120%) 131(↑ 20%) 97(↑ 86%) 54(↑ 54%) 25(↑ 92%) 16(↑ 100%)

observation, and the available actions. Hence, we define the basic interaction functions for general
usage and list the task-specific configurations, e.g., scene name, and reward function, in a JSON
File, as shown in Figure 12. In this way, when adding new UE scenes, the users only need to set the
parameters in the JSON files. Moreover, we contain a toolkit with a set of gym wrappers for training
and testing the agents, such as environment augmentation that has been in previous work for training
generalizable agents (Luo et al., 2018; 2020), population control to adjust the number of agents in
the scene, and time dilation to adjust the control frequency in dynamic scenes. In Section 4.3, we
demonstrate an example usage of the toolkit to analyze the robustness of social tracking agents to
the population of crowds and the impact of the control frequency in such dynamic scenes. We also
provide a launch tool to enable the user to run multiple environments with specific GPU IDs within a
computer, which is useful for distributed online reinforcement learning (Ci et al., 2023).

4 EXPERIMENTS

In this section, we use a subset of UnrealZoo to demonstrate the usability of the collected environments.
For visual navigation, we select two scenes with complex spatial structures to train and validate
the RL-based and VLM-based agents. For active tracking, we select at most 8 scenes as training
environments and validate the generalization of the learned policy in another 24 scenes, which are
divided into four categories according to the scene types. The results demonstrate the importance of
the diversity of the training environments to the cross-domain generalization. For social tracking, we
analyze the robustness of the agent in social environments with different control frequencies, using
the toolkit provided in the gym to generate crowds with varying populations and control frequencies.

4.1 VISUAL NAVIGATION

visual navigation in the wild introduces a new level of complexity compared to traditional navigation
tasks for indoor scenes or autonomous driving, which often run on complex 3D spatial structures.
Differently, we place the agent in open-world environments where it must take a set of locomotion,
e.g., running, climbing, jumping, crouching, to go over the various obstacles in unstructured terrains
to reach the target object. In this setting, the agent requires advanced spatial reasoning and actions to
make real-time decisions about its path. The emphasis on such complex environments ensures the
agent can operate effectively in a broad range of challenging scenarios, moving beyond the constraints
of traditional navigation frameworks. The details of the task setting are introduced in Appendix B.1.

Evaluation Metrics. We employ two key metrics to evaluate visual navigation agents: 1) Average
Episode Length (EL), representing the average number of steps per episode over 50 episodes. 2)
Success Rate (SR), measuring the percentage of episodes the agent successfully navigates to the target
object out of 50 total episodes, which represents the navigation capability in the wild environment.

Baselines for Navigation. We build simple baselines to demonstrate the applicability of our envi-
ronments for training reinforcement learning agents and benchmark the agents based on pre-trained
large models. 1) Online RL: We trained the RL-based navigation agents separately in the Roof
and Factory environments using a distributed online reinforcement learning (RL) approach, e.g.
A3C (Mnih et al., 2016). The training curve is shown in Figure 16. The model takes the first-person
view segmentation mask and the relative position between the agent and target as input, and outputs
direct control signals (from the predefined action space) to navigate. This setup allows the agent to
learn and optimize navigation strategies during continuous interaction with the environment. Please
refer to Appendix C.1 for the implementation details. 2) GPT-4o: We employ the GPT-4o model to
take action, leveraging its powerful multi-modal reasoning capabilities. The model takes first-person
view images and the relative position between the agent and the fixed target as input. The GPT-4o
model follows our prompt template (See Table 14) as guidance, reasoning appropriate actions from
the predefined control space to guide the agent toward the target. 3) Human: We also have a human
player control the agent using a keyboard, similar to a first-person video game. The player navigates
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Figure 4: An exemplar sequence from the embodied navigation agent in the Roof. The RL-based
agent learned to climb on a box and wall and jump over an obstacle to reach the goal location in a
short path.

the agent from a random starting point to a fixed target, making decisions based on visual observations
from the shared control space.

Results. In Table 3, we report the performances of different methods in two unstructured scenes.
The RL-based agent performs moderately well, achieving better results in the simpler environment
(IndustrialArea) compared to the Roof, where the target object is located on different levels of stairs.
The GPT-4o agent struggles in both scenarios. This infers that the GPT-4o performs poorly in complex
3D scene reasoning. As a reference, the human player completes both tasks with the fewest steps
and a 1.00 success rate, underscoring the significant performance gap between current embodied
AI agents and humans, indicating substantial room for improvement to navigate in such complex,
open-world environments.

4.2 ACTIVE VISUAL TRACKING

Table 3: The results (EL/SR) of visual naviga-
tion in two unstructured terrains.

Methods Roof IndustrialArea
Online RL 1660/0.32 261/0.52

GPT-4o 2000/0.00 369/0.20
Human 515/1.00 158/1.00

We evaluate the generalization of the tracking
agents across four environment categories: Inte-
rior Scenes, Palaces, Wilds, and Modern Scenes.
Each category contains 4 individual environments,
as shown in Figure 9. We aim to capture a broad
range of features in our environment collection by
selecting four distinct and representative scenes
from each category, ensuring a comprehensive eval-
uation of the agents’ capabilities. The details of the
tasks are introduced in Appendix B.2. We analyzed
the effectiveness of the diversity of the training data by collecting demonstrations with different
numbers of training environments.

Evaluation Metrics. Our evaluation employs three key metrics: (1) Average Episodic Return (ER),
which calculates the mean episodic return over 50 episodes, providing insights into overall tracking
performance; (2) Average Episode Length (EL), representing the average number of steps per episode,
which reflects long-term tracking effectiveness; and (3) Success Rate (SR), measuring the percentage
of episodes that complete 500 steps out of 50 total episodes.

Baselines for Active Visual Tracking. For the RL-based agents, we extend from the official
implementation settings from the recent offline RL method (Zhong et al., 2024), collecting offline
datasets and employing the original network architecture. To demonstrate the impact of data diversity
on tracking performance, we collect three sets of offline datasets, each containing 100k steps. The
key difference between these datasets is the number of environments used for data collection: one
was collected in a single environment (denoted as 1 Env.), another in two environments(denoted as 2
Envs.), and the third in eight distinct environments (denoted as 8 Envs.). The offline training curve of
each setting is shown in Figure 15. The environment distribution of each dataset setting is shown in
Figure 11. It is worth noting that FlexibleRoom, one of the environments used for data collection, is a
unique abstract environment, with all objects represented as geometric shapes covered by randomized
patterns. This distinctive setup contrasts with the more realistic and diverse environments in the
collection, offering a unique scenario for testing agent adaptability. For the VLM-based agents, we
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utilize the latest large models GPT-4o to directly generate actions based on observed images for
tracking a target person. To ensure smooth and precise transitions, we designed a system prompt that
helps the model understand the task while standardizing the output format to align with predefined
action settings. This prompt ensures the model produces actions coherent with the task’s requirements.
Specifically, GPT-4o is tasked with generating concrete action decisions from a predefined instruction
space: moving forward, moving backward, turning left, turning right, or maintaining the current
position. Once an instruction is generated, we map it to corresponding linear and angular velocities
to update the agent’s movement in the environment. It is important to note that while the system
prompt can use raw image observations as input, our experience shows poor alignment performance
and significant time delays, which pose challenges for real-time tracking. The full system prompt and
mapping relationship are provided in Appendix C.2.

Result Analysis. We first evaluate the performance of agents trained with offline datasets collected
from varying numbers of environments (1 Env., 2 Envs., 8 Envs.) across 16 distinct environments.
We list the detailed evaluation results across the entire 16 environments in Table 11. To better visualize
the performance change of different training settings within various scene categories, we calculate
the average success rate (SR) of each agent in four categories, the results are shown in Figure 5.
The results reveal a clear trend: as the number of environments used for training increases,
agent long-term tracking performance generally improves across all categories. In the Wilds, a
significant increase in success rate is observed with the 8 Envs. dataset, which involves the highest
diversity of environments. This demonstrates that diverse environmental exposure plays a crucial role
in improving the agent’s generalization capabilities in more complex, open-world environments. The
lower success rate in the 1 Env. dataset highlights the limitations of training solely in abstract settings
like the FlexibleRoom. Similarly, in the Palace, the success rate improves notably from 1 Env. to 8
Envs., suggesting that training with a broader range of environments helps the agent better adapt to
intricate spatial structures typical of Palace-like maze environments.

4.3 SOCIAL TRACKING
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Figure 5: Average success rate of agents across
four environment categories: Compact Interior,
Wildscape Realm, Palace Maze, and Lifelike Ur-
banity, evaluated under three offline dataset set-
tings (1 Env, 2 Envs., 8 Envs.). The results show
the generalization capability improves significantly
as more diverse environments are included in the
dataset. However, environments with complex spa-
tial structures, such as Compact Interior and Palace
Maze, exhibit lower success rates, highlighting
challenges in obstacle avoidance and navigation.

We further evaluate the tracking agents in a so-
cial scenario, where the agent needs to follow
the target in crowds. Such a setting contains
varying high-dynamics objects with similar ap-
pearances, e.g., pedestrians. We can directly ap-
ply the population control wrapper in the Gym
toolkit to extend the environment used for active
tracking to this setting.

Robustness to Active Distractions. A key chal-
lenge in active visual tracking tasks is managing
active distractions, a critical issue for real-world
deployment in crowds. Thus, we conducted an
experiment in the DowntownWest and generated
crowds with varying numbers of human charac-
ters as distractors notated as 4D, 8D, and 10D.
The number indicates the number of distractors.
We compared the performance of the offline RL
method, trained under three dataset configura-
tions (1 Env., 2 Envs., 8 Envs.), against the VLM-
based method, evaluating the agents’ ability to
maintain robust tracking under these different
levels of active distractions.

The results in Table 5 show clear performance
differences between the offline RL methods (1 Env., 2 Envs., 8 Envs.) and the GPT-4o model in
handling active distractions. As the number of distractors increases, the offline RL methods maintain
relatively stable success rates (SR), with the highest performance seen in the 8 Envs. setting, which
achieves an SR of 0.8 in the 4D condition and remains robust with slight declines in the 8D and 10D
conditions (0.72 and 0.68, respectively). This suggests that the agent benefits from the richer diversity
of training data, enabling it to handle increasingly complex crowd scenarios more effectively. On the
other hand, the GPT-4o model consistently struggles with active distractions, showing significantly
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Table 5: Performance comparison of different methods in the DowntownWest environment with
varying numbers of distractors (4D, 8D, 10D). Each cell presents three metrics from left to right:
Average Episodic Return (ER), Average Episode Length (EL), and Success Rate (SR).

Method 4D 8D 10D
Offline RL 1 Env. 251/450/0.70 201/406/0.58 230/247/0.64
Offline RL 2 Envs. 309/456/0.74 259/424/0.68 258/428/0.68
Offline RL 8 Envs. 245/458/0.80 225/435/0.72 218/444/0.68

Offline RL 8 Envs. (Robot dog) 220/409/0.48 189/386/0.42 143/367/0.40
GPT-4o -102/264/0.16 -64/270/0.14 -80/240/0.10

lower average returns (ER) and success rates across all settings. The model’s inability to cope
with dynamic, crowded environments is evidenced by its poor performance, particularly in the 10D
condition where it records a success rate of just 0.1. This highlights a major limitation of the VLM-
based method in dynamic environments with active distractions, as it lacks the temporal consistency
and real-time adaptability required for effective tracking. Further evaluation results across different
environments are provided in the Appendix D.3.

Cross-Embodiment Generalization. We transfer the agent trained for the human character to the
robot dog, which observes the world from a lower perspective. We can see that the results in Table 5
drop, particularly the success rate, indicating that the research community should pay more attention
to the cross-embodiment generalization.

The Impact of Control Frequency. We employ the time dilation wrapper to simulate different
control frequencies during deployment. The frequency of the perception-control loop is crucial
for handling dynamic environments. As is shown in Table 4, when the rate drops below 10 FPS,
performance significantly declines. We observe that higher control frequencies enable RL-based
agents to perform better in social tracking. These results emphasize the importance of building
efficient models for embodied agents, to accomplish tasks in dynamic open worlds.

4.4 LIMITATION ANALYSIS AND SUMMARY

Table 4: The impact of control fre-
quency on tracking performance.
We evaluate the agent (Offline RL 1
Env.) in the FlexibleRoom environ-
ment using the time dilation wrap-
per to simulate varying control fre-
quencies.

ER/ EL/ SR.
3 FPS 184/377/0.34

10 FPS 303/449/0.62
30 FPS 368/482/0.92

w/o Control 275/425/0.74

The current RL method shows some capacity to learn spatial-
temporal information and dynamically respond to target move-
ment in most scenarios, but it struggles with executing advanced
actions like bypassing obstacles. In compact Interior cate-
gories and some special environments such as TerrainDemo,
IndustrialArea, and ModularSciFiSeason1, which feature irreg-
ular landscapes, narrow passageways, and maze-like structures,
the agent often collides with casually placed low-level objects.
While the agent can track targets, it’s insufficient to handle
unpredictable hindrances, especially in key moments like by-
passing corners or tight spaces, which increases the likelihood
of failure. This highlights a significant limitation: although
the agent can learn and react to its environment, it lacks the
higher-level reasoning to anticipate and avoid obstacles effec-
tively. Advanced behaviors like bypassing obstacles are crucial
for improving performance, especially in cluttered environments where basic reactive controls are
insufficient. Incorporating such reasoning mechanisms would help reduce failure rates, particularly
in critical scenarios, and improve overall tracking performance.

For the VLM-based method, one key factor contributing to GPT-4o’s notably poor performance,
especially in comparison to the RL methods, is its susceptibility to time delays. From our experience,
this issue becomes particularly evident when the target makes abrupt movements, such as turning
around. Due to the API’s response lag, the GPT-4o agent struggles to track the target in real time,
often losing it before receiving updated instructions. This limitation highlights the difficulty of
real-time processing in embodied tracking tasks using models that rely on slower external API
communications, underscoring the need for more efficient integration methods for such systems.
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5 CONCLUSIONS

In conclusion, we present UnrealZoo, a versatile platform designed to advance embodied AI research.
The diversity and complexity of the collected realistic environments challenge agents with varying
embodied interaction tasks, such as visual navigation, active tracking across various environments,
and social tracking in crowds. The enhanced UnrealCV+ API supports efficient data collection and
task customization, enabling seamless interaction for both single and multi-agent systems. These
features will open up potential applications like developing spatial intelligence in the 3D world
and social intelligence in human-AI society, making our platform a valuable tool for pushing the
boundaries of embodied AI in real-world scenarios. Looking forward, we will continue to enrich the
virtual worlds with diverse scenes, bodies, and interaction tasks, advancing agents from the virtual
realm to reality for a harmonious human-AI society.

Limitations. While our proposed environment provides diverse and complex scenarios for visual
navigation, tracking, and other visual-based tasks, it currently lacks high-fidelity physical simulation,
limiting the agent’s ability to manipulate objects. Additionally, transferring learned behaviors to
different embodied agents poses a challenge, as adapting models to various physical structures and
control schemes is not yet seamless. These issues highlight areas for further research to enhance
interaction dynamics and improve generalization across diverse agent embodiments.
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A UE ENVIRONMENTS

A.1 COMPARISON WITH OTHER SIMULATORS

To better explain Table 1, we list the description of each symbol about the scene types and playable
entities in Table 6. Since photorealism mainly relies on the engine used, we visualize the snapshots
rendered by different engines in Figure 6. Note that Google Maps are images captured in the
real world, but can not simulate the dynamic of the scenes and interactions between objects. By
utilizing advanced rendering and physics engines, Unreal Engine simulates large-scale photorealistic
environments that are not only visually appealing but also capable of complex interactions between
agents and objects. So we choose to build environments on Unreal Engine.

Table 6: The description of symbols used in Table 1.

Table 1: The comparison with related virtual worlds for embodied AI.
Virtual
Worlds

Scene:
Categories

Scene:
Scale Level

Scene:
Unstr. Terr.

Scene:
Base Engine

Agent:
Body

Agent:
Nav. Sys.

Agent:
Multi-agent

VirtualHome Room - Unity X X
AI2THOR Room - Unity - -

ThreeDWorld Room, Building, Landscape X Unity - X
OmniGibson Room - Omniverse - - -
Habitat 3.0 Room - Habitat-Sim X X

CARLA Building, Town - UE 4 - X
AirSim Building, Town, Landscape - UE 4 - X

LEGENT Room, Building X Unity X -
V-IRL Town, Landscape X Google Map X X

UnrealZoo Room, Building,
Town, Landscape X UE 4/5 X X

Table 2: The comparison with related virtual worlds for embodied AI.

Virtual
Worlds

Scene:
Categories

Scene:
Scale Level

Scene:
Style

Scene:
Base Engine

Agent:
Body

Agent:
Nav. Sys.

Agent:
Multi-agent

VirtualHome Indoor Modern, Western Unity X X
AI2THOR Indoor Modern, Western Unity - -

ThreeDWorld Indoor, Building, Community Modern, Western, Nature Unity - X
OmniGibson Indoor Modern, Western Omniverse - - -
Habitat 3.0 Indoor Modern, Western Habitat-Sim X X

CARLA Community, Landscape Modern, Western, Nature UE 4/5 X X
AirSim Community, Landscape Modern, Western, Nature UE 4 - X

LEGENT Indoor, Building Modern, Western Unity X X
V-IRL Community, Landscape Modern, Western, Nature Google Map X X

UnrealZoo Indoor, Building,
Community, Landscape

Ancient, Modern, Sci-Fi
Western, Eastern, Nature UE 4/5 X X

Symbol Description
Interior house with furnishings

Residential community with multiple buildings
High-fidelity large-scale urban environments

Exterior scenes with roads
Natural scenes with forests or grasslands

Large-scale natural landscape, including lakes, mountains, desert
An island landscape

Castle-style historic buildings
Asian temple architecture features stairs, lofts, and shrines.

Industrial areas with internal roads and factory facilities
Educational settings, including classrooms and gymnasiums.
Sports venue scenes, such as swimming pool, sport stadium.

Supermarket contains a wide range of daily essentials and produce.
Typical urban public transportation hubs, such as train and gas stations.

Detailed hospital interior scenes.
Human characters with detailed features such as hair textures, clothing, and actions

Mobile robot
Driveable car

Animals include common animal species such as cats, dogs, horses, pigs, etc.
Driveable motorbike

Drones
Virtual camera that has no physical entity and is movable

Table 3: Caption

2

A.2 ENVIRONMENTS USED IN VISUAL NAVIGATION

We carefully selected two photo-realistic environments (Roof and Factory) for training and evaluating
navigation in the wild, shown in Figure 8. The Roof environment features multiple levels connected
by staircases and large pipelines scattered on the ground, providing an ideal setting for the agent
to learn complex action combinations for transitioning between levels, such as jumping, climbing,
and navigating around obstacles. The Factory environment, on the other hand, is characterized by
compact boxes and narrow pathways, challenging the agent to determine the appropriate moments to
jump over obstacles or crouch to navigate under them. These two environments offer diverse spatial
structures, enabling agents to develop an understanding of multi-level transitions and precise obstacle
avoidance.

A.3 ENVIRONMENTS USED IN ACTIVE VISUAL TRACKING

For training agents via offline reinforcement learning, we selected 8 distinct environments to collect
demonstrations, as is shown in Figure 11. To comprehensively evaluate the generalization of the
active visual tracking agents, we selected 16 distinct environments, categorized into Interior Scenes,
Palaces, Wilds, and Modern Scenes. Each category presents unique challenges: 1) Interior Scenes
feature complex indoor structures with frequent obstacles; 2) Palaces include multi-level structures
and narrow pathways; 3) Wilds encompass irregular terrain and varying illumination; 4) Modern
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Unity Omniverse Habitat-Sim

Google Map Unreal Engine 4 Unreal Engine 5

Figure 6: Comparison of the visual realism of different engines: we show the snapshots captured
from different engines to compare the photo-realism of different environments for an intuitive feeling.
Note that Google Maps capture and reconstruct the images from the real world, but can not simulate
the dynamic of the scenes and interactions between agents and objects.
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Figure 7: The statistical distribution of scene content and scale in UnrealZoo. The bar chart depicts
the number of scenarios featuring each type of content, noting that larger scenes may encompass
multiple categories. The pie chart classifies these scenes by scale, revealing a predominance of large-
scale ‘Landscape’ environments, followed by ‘Community’, ‘Building’, and ‘Indoor’ levels. The
distribution reflects the diversity of UnrealZoo and the balanced composition of scenes of different
scales.

Scenes offer high-fidelity, real-world scenarios with modern buildings and objects. These diverse
environments facilitate a thorough assessment of the agent’s generalization capabilities across varying
complexities. The snapshot of each environment is shown in Figure 9.
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Roof Factory

Figure 8: Two photo-realistic environments used for visual navigation.

Bunker StorageHouse SoulCave UndergroundParking

Desert Ruins GreekIsland SnowMap RealLandscape

WesternGarden TerrainDemo ModularSciFiSeason1ModularGothicNight

SuburbNeighborhoodDay DowntownWest IndustrialArea Venice

Compact 
Interior

Wildscape
Realm

Palace 
Maze

 Lifelike
Urbanity

Figure 9: The snapshots of 16 environments used for testing active visual tracking agents. The text
on the left indicates the category corresponding to that line of environment.

A.4 NAVIGATION MESH

Based on NavMesh, we build an internal navigation system, allowing agents to autonomously
navigate with the built-in AI controller in the Unreal Engine. This includes path-finding and obstacle-
avoidance capabilities, ensuring smooth and realistic movement throughout diverse terrains and
structures. Moreover, in our City style map, we manually construct road segmentation, we manually
segment the roads to distinguish between pedestrian and vehicle pathways. When agents use the
navigation system for autonomous control, they will navigate the shortest path based on the priority of
the different areas. Figure 10 shows an example of the rendered semantic segmentation for NavMesh
in an urban city.
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Figure 10: An example of the NavMesh with semantic segmentation. The human character will
prioritize using the pink area for pedestrian navigation tasks, while the vehicles will use the blue area.

B EXEMPLAR TASKS

B.1 VISUAL NAVIGATION

In this task, the agent is initialized at a random location in the environment at the beginning of each
episode, while the target object’s location and category remain fixed throughout. The agent must
rely on its first-person view observations and the relative spatial position of the target as input. The
ultimate objective is to locate the target object within 2000 steps. Success is defined by the agent
reducing the relative distance to less than 3 meters and aligning its orientation such that the relative
rotation between the target and the agent is smaller than 30 degrees (in the front of the agent). This
setup challenges the agent to optimize its movements and decision-making while adapting to the
randomized starting conditions and dynamic environment. All methods in the task share the same
discrete action space to control the movement, consisting of moving forward (+1 meter/s), moving
backward (-1 meter/s), turning left (-15 degrees/s), turning right (+15 degrees/s), jumping (two
continuous jumping actions trigger the climbing action), crouching, and holding position. This action
space enables the agent to navigate and interact with complex 3D environments, making strategic
decisions in real-time to reach the target object efficiently. The step reward for the agent is defined as:

r(t) = tanh(
dis2target(t− 1)− dis2target(t)

max(dis2target(t− 1), 300)
− |Ori|

90◦
) (1)

where dis2target(t) is the Euclidean distance between the agent and the target at a given timestep t
and |Ori| is the absolute orientation error (in degrees) between the agent’s current heading and the
direction toward the target, normalized by 90◦

B.2 ACTIVE VISUAL TRACKING

Referring to previous works (Zhong et al., 2024), we use human characters as an agent player and a
continuous action space for agents. The action space contains two variables: the angular velocity and
the linear velocity. Angular velocity varies between −30◦/s and 30◦/s, while linear velocity ranges
from −1 m/s to 1 m/s. In the agent-centric coordinate system, the reward function is defined as:

r = 1− |ρ− ρ∗|
ρmax

− |θ − θ∗|
θmax

(2)
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Figure 11: The 8 environments used for collecting offline dataset.

where (ρ, θ) denotes the current target position relative to the tracker, (ρ∗, θ∗) = (2.5m, 0) represents
the expected target position, i.e., the target should be 2.5m in front of the tracker. The error
is normalized by the field of the view (ρmax, θmax). During execution, an episode ends with a
maximum length of 500 steps, applying the appropriate termination conditions. In the experiment,
we adopt the original neural network structure and parameters, as listed in Table 9 and 10.

B.3 TASK CONFIGURATION IN A JSON FILE

We provide an example of the task configuration JSON file in Figure 12. Using the JSON file, we can
easily set the configuration of the binary, the continuous and discrete action space for each agent,
the placement of the binding camera, choose the area to reset, and other hyper-parameters about the
environments.

B.4 COLLECTING DEMONSTRATION FOR ACTIVE VISUAL TRACKING

To demonstrate the flexibility of the environment, we use state-based expert policy and the multi-level
perturbation strategy (Zhong et al., 2024) to automatically generate various imperfect demonstrations
as the offline dataset. For active visual tracking, we employ three distinct datasets for training agents
via offline reinforcement learning (Offline RL) algorithms, referred to as 1 Env., 2 Envs., and 8 Envs.
The detailed composition of each dataset is depicted in Figure 11. For the 1 Env. dataset, we use only
the FlexibleRoom, an abstract environment enriched with diverse augmentation factors, to gather
100k steps of trajectory data. For 2 Envs., we collect 50k step trajectories from FlexibleRoom and an
additional 50k steps from the Supermarket environment. The 8 Envs. dataset involves eight different
environments, with 12.5k steps collected from each. Therefore, the total amount of data in the three
datasets is the same (100k) to ensure the fairness of the comparison. These dataset configurations
aim to highlight the critical role of environment diversity in enhancing the generalization capabilities
of embodied AI agents.
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A Json File for Task Configuration
"env_name": env_name,
"env_bin":path-to-binary,
"env_map": map_name,
"env_bin_win": path-to-binary(for windows),
"third_cam": {"cam_id": 0,"pitch": -90,"yaw": 0,"roll": 0,"height_top_view":

1460.0,"fov": 90},
"height": 460.0,
"interval": 1000,
"agents": {

"player": {
"name": ["BP_Character_923"],
"cam_id": [3],
"class_name": ["bp_character_C"],
"internal_nav": true,
"scale": [1,1,1],
"relative_location": [20,0,0],
"relative_rotation": [ 0,0,0],
"head_action_continuous": {"high": [15,15,15], "low": [-15,-15,-15]},
"head_action": [ [0,0,0],[0,30,0],[0,-30,0]],
"animation_action": ["stand","jump","crouch"],
"move_action": [
[angular, velocity]

...
],
"move_action_continuous": {"high": [30,100],"low": [-30,-100]}

},
"animal": {

"name": ["BP_animal_2"],
"cam_id": [1],
"class_name": ["BP_animal_C"],
"internal_nav": true,
"scale": [1,1,1],
"relative_location": [20,0,0],
"relative_rotation": [0,0,0],
"move_action": [

[angular, velocity]
...

],
"move_action_continuous": { "high": [30,100],"low": [-30,-100]}

},
"drone": {

"name": ["BP_Drone01_2"],
"cam_id": [2],
"class_name": ["BP_drone01_C"],
"internal_nav": false,
"scale": [ 0.1,0.1,0.1],
"relative_location": [0,0,0],
"relative_rotation": [0,0,0],
"move_action": [

[angular, velocity]
...

],
"move_action_continuous": {"high": [1,1,1,1],"low": [-1,-1,-1,-1]}

}
},
"safe_start": [

[x,y,z],
...

],
"reset_area": [x_min,x_maxin,y_min,y_max,z_min,z_max],
"random_init": false,
"env": {"interactive_door": []},
"obj_num": 466,
"size": 192555.0,
"area": 9900.0,
"bbox": [110.0, 90.0,19.45]

Figure 12: An example of the task configuration file in JSON format.
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C IMPLEMENTATION DETAILS OF AGENTS

C.1 RL-BASED AGENTS

Learning to navigate with online reinforcement learning. For navigation, we construct an RL-
based end-to-end model, using A3C (Mnih et al., 2016) to accelerate online reinforcement learning
in a distributed manner. The model’s structure is as follows: a mask encoder extracts spatial visual
features from the segmentation mask, which are then passed to a temporal encoder to capture latent
temporal information. Finally, the spatiotemporal features, concatenated with the target’s relative
spatial position, are fed into the actor-critic network to optimize the actor layer for action prediction.
The detailed network structure and parameters used in the experiment are listed in Table 7 and 8.
Here, we provide the training curves in Roof and Factory environments, depicted in Figure 16. In
the Factory, we set the number of workers to 4, while in the Roof, the number of workers is set to 6.
It can be observed that, for Online RL, the number of workers and the complexity of environments
have a significant impact on training efficiency. Looking forward, we anticipate that offline-based
algorithms can effectively address the challenges of training efficiency and generalization.

Table 7: Details the neural network structure of RL-based agent for navigation task, where 5×5-32S1
means 32 filters of size 5×5 and stride 1, FC256 indicates the fully connected layer with output
dimension 256, and LSTM128 indicates that all the sizes in the LSTM unit are 128.

Module Mask Encoder
Layer# CNN Pool CNN Pool CNN Pool CNN Pool

Parameters 5×5-32S1 2-S2 5×5-32S1 2-S2 4×4-64S1 2-S2 3×3-64S1 2-S2
Module Temporal Encoder Actor Critic
Layer# FC LSTM FC FC

Parameters 256 128 2 2

Table 8: The experiment setting and hyper-parameters used for training the RL-based navigation
agent.

Name Value Name Value
Learning Rate 1e-4 LSTM update step 20
workers (Roof) 6 LSTM Input Dimension 256
workers (Factory) 4 LSTM Output Dimension 128
Position Input Dimension 2 LSTM Hidden Layer size 1

Learning to track with offline reinforcement learning. For the tracking task, we adopt an offline
reinforcement learning (Offline RL) approach to enhance training efficiency and improve the agent’s
generalization to unknown environments. Specifically, we build an end-to-end model trained using
offline data and the conservative Q-learning (CQL) strategy (Kumar et al., 2020). We adopt the same
model structure from the latest visual tracking agent (Zhong et al., 2024), consisting of a Mask
Encoder, a Temporal Encoder, and an Actor-Critic network. Detailed model structures and training
parameters are summarized in Table 9 and 10. Additionally, we provide the model’s loss curves
under different dataset setups, as shown in Figure 15. The model achieves near-convergence within
two hours across all dataset setups. To ensure the loss curves stabilize fully, we continued training for
an additional three hours, during which no significant further decrease in the loss was observed. A
comprehensive evaluation of the model’s performance is presented in Tables 11 and 12, highlighting
its strong generalization to unseen environments and robustness to dynamic disturbances. The training
efficiency, generalization capability, and robustness achieved by offline RL further reinforce our
belief that offline RL methods will become a mainstream approach for rapid prototyping and iteration
in embodied intelligence systems.
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Table 9: Network structure used in the offline RL method (Zhong et al., 2024), where 8×8-16S4
means 16 filters of size 8×8 and stride 4, FC256 indicates a fully connected layer with dimension
256, and LSTM64 indicates that all sizes in the LSTM unit are 64.

Module Mask Encoder Temporal Encoder Actor Critic
Layer# CNN CNN FC LSTM FC FC

Parameters 8×8-16S4 4×4-32S2 256 64 2 2

Table 10: The hyper-parameters used for offline training and the policy network.

Name Value Name Value
Learning Rate 3e-5 LSTM update step 20
Discount Factor 0.99 LSTM Input Dimension 256
Batch Size 32 LSTM Output Dimension 64
LSTM Hidden Layer size 1

C.2 VLM-BASED AGENTS

We built agents with a reasoning framework based on the Large Vision-Language Model. We employ
OpenAI GPT-4o as the base model. System prompt used in the navigation task, as shown in Figure 14
and system prompt used in the tracking task, as shown in Figure 13.

C.3 HUMAN BENCHMARK FOR NAVIGATION

In the navigation task, we incorporated human evaluation as a baseline for comparison to demonstrate
the existing gap between the current method and optimal navigation performance. Specifically, five
male and five female evaluators participated in the assessment, performing the same navigation tasks
under comparable conditions.

Before each human evaluator began their assessment, we provided a free-roaming perspective to
familiarize them with the map structure and clearly conveyed the target’s location and image. This
ensured that human evaluators had a comprehensive understanding of the environment and the target’s
position. During the evaluation, the player was randomly initialized in the environment, and human
evaluators used the keyboard to control the agent’s movements. Each human evaluator repeated the
experiment five times, providing multiple data points to ensure reliability and reduce variability in
performance measurements. The termination conditions for the evaluation were identical to those
applied to the RL-based agent, ensuring consistency in the comparison.
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System Prompt used for active tracking
Objective:
You are an intelligent tracking agent designed to control the robot to track the person

in the view. The first person in your view is your target. You need to provide
concrete moving strategie to helo robot tracking the target in the given
environment.

Representation details:
1. Moving instructions are concrete actions that the robot can take to adjust its

viewpoint and distance to the target. The moving instructions include:
-move closer: Move the robot closer to the target. This should be chosen when the

target is too far away from the robot and there is no obstacle in the way.
-move further: Move the robot further away from the target. This should be 2chosen

when the target is too close to the robot and only part of the target body is
visible in the view.

-keep current: Maintain the current distance and angle between the robot and the
target. This is chosen when the target is fully observable in the view and
there is enough space in front of both tracker and target without any
potential obstacles may cause collision and occlusion.

-turn left: Turn the robot to left direction, the target will move towards the
right side in next frame.

-turn right: Turn the robot to right direction, the target will move towards the
left side in next frame.

Input Understanding:
1.**Image:** We provide a first-person view observation of the robot to help you

understand the surrounding environment. The observation is represented as a color
image from the tracker’s first-person perspective.

Output Understanding:
1. **Moving Strategy:** A temporal reasonable move strategy to adjust the robot

viewpoint and distance to achieve robots’s long-term tracking task. This should be
represented as a concrete moving instructions, the instructions should be choose

from "move closer", "move further" ,"keep current", "turn left","turn right".
Format - [Keep current].

Strategy Considerations:
1.If the person’s horizontal position in the robot’s field of view deviates from the

center by more than 25% of the image width, we consider the target to be on one
side of the image, otherwise we say the target is near the center.

2.To provide a reasonable moving strategy, you should think step by step based on the
input image and the following hints:
1)If the person is too close to the robot and the target in the image is clipped,

robot should move further first to obtain a better view.
2)If the person’s size in the view is too small in the image, robot should move

closer to obtain a better view.
3)If the person may occluded by obstacles or structures in the future, the robot

should move closer to avoid losing the person in the next frame.
4)If the person is near the right edge in the image and there is no immediate

obstacle in front of robot, the robot should turn right to keep person near
center in the image.

5)If there is immediate hinder obstacles in front of the robot, turn right or left
to a clean space first.

6)If there is any potential occlusion effect or obstacles on either side of the
person’s walking path, the robot should move closer to avoid losing the person
in the next frame.

7)If there is no person in the current image, turn right or turn left to search the
person.

Instructions:
1.Provide ONLY the decision in the [output:] strictly following the format without

additional explanations or additional text.

Figure 13: System prompt used for tracking.

23



Preprint. Under review.

System Prompt used for navigation
Objective:
You are an intelligent navigation agent designed to control the robot to navigate to

the target object location based on first-person observation and provide a
relative position between the robot and the target. You need to provide an action
sequence to help the robot move to the target location.

Representation details:
1. Relative Position: This contains three elements, in the format - [Distance,

Direction, Height].
-Distance: The relative distance between the robot and the target object.
-Direction: The target object’s relative direction to the robot, represented in

degrees. \
A positive value represtent the target is on the right side of the robot

with corresponding angle and a negative value represent the target is
on the left side of the robot with corresponding angle. \

The absolute value of the angle larger than 90 degree means the target is
behind the robot. \

-Height: The relative vertical position, where a positive value indicates that the
target is higher than the robot.

1. Actions: These are the movements the robot can perform to adjust its position. The
available actions include:
-Move Forward: Propel the robot forward by 100 centimeter.
-Move Backward: Propel the robot backward by 100 centimeter.
-Turn Left: Rotate the robot 15 degrees to the left.
-Turn Right: Rotate the robot 15 degrees to the right.
-Jump: Make the robot leap into the air, robot should use this action to jump over

obstacles or climb over stairs.
-Crouch: Lower the robot into a crouching position for 2 seconds, after which it

will automatically stand up.
-Keep Current: Maintain the robot’s current position without any movement.

Input Understanding:
1.**Image:** We provide a first-person view observation of the robot to help you

understand the surrounding environment. The observation is represented as a color
image from the robot’s first-person perspective.

2.**Relative Position:** This data provides the target object’s relative position to
the robot, including the distance, direction, and height. The distance is measured
in centimeters, the direction in degrees, and the height in centimeters.

Output Understanding:
1. **Action Sequence:** This is a series of Three continuous actions that the robot

should take to navigate toward the target object. Each sequence must consider the
provided relative position data and the first-person observation. \

The actions should be ordered logically to effectively move the
robot closer to the target, adjusting its direction,
distance, and height as needed. \

The action sequence should be clear and executable, enabling
the robot to reach the target efficiently while avoiding
obstacles and maintaining stability

in the format - [Action1, Action2, Action3]. Each action should
be choose from the available actions mentioned above.

Strategy Considerations:
1.Assessing Relative Position: Begin by evaluating the target object’s relative

position in terms of distance, direction, and height to inform the action sequence
.

2.Action Combination for Navigation: Utilize the action sequence to create effective
combinations, each action will last for 1 seconds. For example:

-Consider using multiple consecutive actions like [Move Forward, Jump, Jump] to
climb over the front obstacles or boxes.

-Consider using [Move Backward,Move Backward,Move Backward] to move the robot
avoid a front wall or fence.

3.Obstacle Detection: Leverage the first-person observation to identify obstacles.
Based on their location, formulate action sequences that facilitate smooth
navigation while avoiding collisions.

4.Efficient Pathing: Ensure the action sequence is designed to dynamically adjust the
robot movement torward target object, which is minimize the distance and direction
value in **Relative Position**.

5.Sequence Validation: Validate the generated action sequence and consider past
memories to ensure it is practical given the current environment and obstacles,
making long-term adjustments as necessary.

Instructions:
1.Provide ONLY the action sequence in the [output:] strictly following the format -[

Action1, Action2, Action3], without additional explanations or additional text.

Figure 14: System prompt used for navigation.

24



Preprint. Under review.

Figure 15: The CQL loss curve during offline training with different offline datasets.

Figure 16: The learning curves for RL-based navigation agent in two environments: Roof and Factory.
We use A3C (Mnih et al., 2016) to learn the navigation policy via trial-and-error interactions. In
the Factory (blue line plot), the number of asynchronous workers is set to 4, while in the Roof
environment (orange line plot), the number of asynchronous workers is set to 6.

D ADDITIONAL RESULTS

D.1 LEARNING CURVE

We provide the CQL loss curve under the 1 Env., 4 Envs. and 8 Envs. training setup. As shown in
Figure 15, the offline model approaches convergence after two hours and we continued training for
another three hours after nearing convergence, observing no significant further decrease in the loss.
Note that the offline training was conducted on a Nvidia RTX 4090 GPU.

D.2 EVALUATE TRACKING AGENTS ACROSS 16 UNSEEN ENVIRONMENTS

We provide the detailed quantitative evaluation results (episodic returns, episode length, success
rate) of the RL-based embodied tracking agents across 16 environments, listed in Table 11. In each
environment, we report the average results over 50 episodes. The results show that in the Palace Maze,
which contains abundant structural obstacles, the agent’s tracking performance was generally weaker
compared to the other three categories. In contrast, the agent performed generally better in Lifelike
Urbanity, characterized by its relatively regular and flat terrain. Additionally, we observed that as
the diversity of the training environments increased, the agent’s tracking performance improved
across all four environment categories. This highlights the positive impact of diverse training data
on enhancing the agent’s overall tracking effectiveness. We also provide vivid demo videos in
https://unrealzoo.notion.site/task-evt.
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Table 11: Quantitative evaluation results of the offline RL method across 16 environments. The
environments are grouped into four categories: Compact Interior, Wildscape Realm, Palace Maze, and
Lifelike Urbanity. The table compares the performance of agents trained on different offline dataset
settings: 1 Env. (single environment), 2 Envs. (two environments), and 8 Envs. (eight environments).
Each cell presents three metrics from left to right: Average Episodic Return (ER), Average Episode
Length (EL), and Success Rate (SR).

Category Environment Name
1 Env.

ER/EL/SR
2 Envs.

ER/EL/SR
8 Envs.

ER/EL/SR

Compact
Interior

Bunker 241/412/0.56 245/391/0.56 234/429/0.70
StorageHouse 213 /424 /0.68 275/449/0.76 170/434/0.64

SoulCave 229/402/0.60 252/422/0.56 206/405/0.58
UndergroundParking 179/391/0.56 250/424/0.62 184/410/0.60

Wildscape
Realm

Desert Ruins 209/392/0.54 293/449/0.70 277/453/0.70
GreekIsland 245/411/0.62 264/423/0.64 257/466/0.78
SnowMap 204/399/0.62 322/456/0.78 278/474/0.86

RealLandscape 171 /383/0.42 225/372/0.44 223/444/0.70

Palace
Maze

WesternGarden 230/403/0.54 209/408/0.54 296/472/0.82
TerrainDemo 232/411/0.56 233/403/0.56 192/411/0.56

ModularGothicNight 190/360/0.52 244/423/0.62 272/456/0.76
ModularSciFiSeason1 168/365/0.42 172/354/0.42 211/393/0.48

Lifelike
Urbanity

SuburbNeighborhoodDay 224/422/0.64 328/457/0.72 242/457/0.76
DowntownWest 296/460/0.78 317/456/0.76 292/469/0.86

Factory 278/434/0.64 291/452/0.74 249/435/0.64
Venice 295/441/0.70 323/448/0.82 294/474/0.84

Table 12: Quantitative evaluation results of the tracking agents across 4 different category environ-
ments with 4 distractors (4D), 8 distractors (8D), and 10 distractors (10D) respectively. The
table compares the performance of agents trained on different offline dataset settings: 1 Env. (single
environment), 2 Envs. (two environments), and 8 Envs. (eight environments). Each cell presents
three metrics from left to right: Average Episodic Return (ER), Average Episode Length (EL), and
Success Rate (SR).

Category Environment Name
1 Env.

ER/EL/SR
2 Envs.

ER/EL/SR
8 Envs.

ER/EL/SR

Compact
Interior

StorageHouse (4D) 117/343/0.40 181/375/0.52 190/428/0.62
StorageHouse (8D) 143/341/0.34 151/338/0.44 165/366/0.49

StorageHouse (10D) 81/324/0.36 109/331/0.42 107/357/0.50

Wildscape
Realm

DesertRuins (4D) 317/469/0.72 333/456/0.70 354/466/0.74
DesertRuins (8D) 213/406/0.50 316/445/0.58 267/444/0.68
DesertRuins (10D) 188/390/0.44 252/382/0.50 253/447/0.64

Palace
Maze

TerrainDemo (4D) 221/398/0.44 286/454/0.65 312/460/0.77
TerrainDemo (8D) 211/384/0.39 239/412/0.49 252/420/0.52

TerrainDemo (10D) 189/377/0.36 232/404/0.48 224/429/0.66

Lifelike
Urbanity

SuburbNeighborhoodDay (4D) 192/407/0.46 256/381/0.50 265/392/0.60
SuburbNeighborhoodDay (8D) 131/325/0.36 229/369/0.48 247/385/0.56
SuburbNeighborhoodDay (10D) 162/355/0.44 180/340/0.40 165/376/0.44

D.3 EVALUATE TRACKING AGENTS ACROSS UNSEEN SOCIAL ENVIRONMENTS

We select 4 environments from different categories as the testing environments, including Storage-
House, DesertRuins, TerrainDemo, and SurburNeighborhoodDay. We test the distraction robustness
of the social tracking agents by adding different numbers of distractors (4, 8, 10) in the environment.
The distractors randomly walk around the environment, which may produce various unexpected
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perturbations to the tracker, such as visual distractions, occlusion, or blocking the tracker’s path. As
shown in Table 12, the tracking performance of the three agents steadily decays with the increasing
number of distractors.
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